Abstract

We have conducted a systematic 57Fe Mössbauer study on BaR(Cu0.5Fe0.5)2O5+δ double perovskites with various oxygen contents and rare-earth elements (R=Lu, Yb, Y, Eu, Sm, Nd, and Pr). In samples based on R=Lu, Yb, Y, Eu, Sm the oxygen content remained at δ≈0, upon reductive or oxidative heat treatments under normal pressure. The larger rare-earth elements, i.e. Nd or Pr, readily allowed for continuous oxygen content tuning up to δ≈0.3. By employing high-pressure heat treatments higher oxygen contents were achieved for all samples. The Néel temperature of the samples was found to decrease with increasing amounts of oxygen entering the lattice. In high-pressure oxygenated samples the decrease was less severe indicating that despite the incorporation of oxygen a large amount of Fe still remains in the high-spin trivalent state. By using charge-neutrality arguments together with the relative intensities of the Mössbauer spectral components the average valences of Fe and Cu were obtained. Oxygenation under normal pressure led to a corresponding increase of the valence of Fe, while Cu remained divalent. Upon high-pressure heat treatment equal amounts of Fe3+ and Cu2+ were found to be oxidized to Fe5+ and Cu3+, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.