Abstract

The interplay between crystal phase purity and radial growth in InP nanowires is investigated. By modifying the growth rate and V/III ratio, regions of high or low stacking fault density can be controllably introduced into wurtzite nanowires. It is found that regions with high stacking fault density encourage radial growth. Through careful choice of growth conditions pure wurtzite InP nanowires are then grown which exhibit narrow 4.2 K photoluminescence linewidths of 3.7 meV at 1.490 meV, and no evidence of emission related to stacking faults or zincblende insertions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call