Abstract

In this article, we explore the interplay between searches for supersymmetric particles and Higgs bosons at hadron colliders (the Tevatron and the LHC) and direct dark matter searches (such as CDMS, ZEPLIN, XENON, EDELWEISS, CRESST, WARP and others). We focus on collider searches for heavy MSSM Higgs bosons $(A,H,{H}^{\ifmmode\pm\else\textpm\fi{}})$ and how the prospects for these searches are impacted by direct dark matter limits and vice versa. We find that the prospects of these two experimental programs are highly interrelated. A positive detection of $A$, $H$ or ${H}^{\ifmmode\pm\else\textpm\fi{}}$ at the Tevatron would dramatically enhance the prospects for a near future direct discovery of neutralino dark matter. Similarly, a positive direct detection of neutralino dark matter would enhance the prospects of discovering heavy MSSM Higgs bosons at the Tevatron or the LHC. Combining the information obtained from both types of experimental searches will enable us to learn more about the nature of supersymmetry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.