Abstract

We report the crystal structure, charge-density-wave (CDW), superconductivity (SC), and ferromagnetism (FM) in CuIr2-xCrxTe4 (0 ≤ x ≤ 2) chalcogenides. Powder x-ray diffraction (PXRD) results reveal that the CuIr2-xCrxTe4 series are distinguished between two structural types and three different regions: (i) layered trigonal structure region, (ii) mixed phase regions, and (iii) spinel structure region. Besides, Cr substitution for Ir site results in rich physical properties including the collapse of CDW, the formation of dome-shaped like SC, and the emergence of magnetism. Cr doping slightly elevates the superconducting critical temperature (Tsc) to its highest Tsc = 2.9 K around x = 0.06. As x increases from 0.3 to 0.4, the ferromagnetic Curie temperature (Tc) increases from 175 to 260 K. However, the Tc remains unchanged in the spinel range of 1.9 ≤ x ≤ 2. This finding provides a comprehensive material platform for investigating the interplay between CDW, SC, and FM multipartite quantum states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.