Abstract
This study was designed to identify molecular mechanisms by which exercise affects synaptic-plasticity in the hippocampus, a brain area whose function, learning and memory, depends on this capability. We have focused on the central role that brain-derived neurotrophic factor (BDNF) may play in mediating the effects of exercise on synaptic-plasticity. In fact, this impact of exercise is exemplified by our finding that BDNF regulates the mRNA levels of two end products important for neural function, i.e. cAMP-response-element binding (CREB) protein and synapsin I. CREB and synapsin I have the ability to modify neuronal function by regulating gene-transcription and affecting synaptic transmission, respectively. Furthermore, we show that BDNF is capable of concurrently increasing the mRNA levels of both itself and its tyrosine kinaseB (TrkB) receptor, suggesting that exercise may employ a feedback loop to augment the effects of BDNF on synaptic-plasticity. The use of a novel microbead injection method in our blocking experiments and Taqman reverse transcription polymerase reaction (RT-PCR) for RNA quantification, have enabled us to evaluate the contribution of different pathways to the exercise-induced increases in the mRNA levels of BDNF, TrkB, CREB, and synapsin I. We found that although BDNF mediates exercise-induced hippocampal plasticity, additional molecules, i.e. the N-methyl- d-aspartate receptor, calcium/calmodulin protein kinase II and the mitogen-activated protein kinase cascade, modulate its effects. Since these molecules have a well-described association to BDNF action, our results illustrate a basic mechanism through which exercise may promote synaptic-plasticity in the adult brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.