Abstract

Autophagy and apoptosis are two different biological processes that determine cell fates. We previously reported that autophagy inhibition and apoptosis induction are involved in lead(II)-induced cytotoxicity in primary rat proximal tubular (rPT) cells, but the interplay between them remains to be elucidated. Firstly, data showed that lead(II)-induced elevation of LC3-II protein levels can be significantly modulated by 3-methyladenine or rapamycin; moreover, protein levels of Autophagy-related protein 5 (Atg5) and Beclin-1 were markedly up-regulated by lead(II) treatment, demonstrating that lead(II) could promote the autophagosomes formation in rPT cells. Next, we applied three pharmacological agents and genetic method targeting the early stage of autophagy to validate that enhancement of autophagosomes formation can inhibit lead(II)-induced apoptotic cell death in rPT cells. Simultaneously, lead(II) inhibited the autophagic degradation of rPT cells, while the addition of autophagic degradation inhibitor bafilomycin A1 aggravated lead(II)-induced apoptotic death in rPT cells. Collectively, this study provided us a good model to know about the dynamic process of lead(II)-induced autophagy in rPT cells, and the interplay between autophagy and apoptosis highlights a new sight into the mechanism of lead(II)-induced nephrotoxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call