Abstract

A 2-D finite-element-method (FEM) numerical experiment of earthquake cycles at a subduction zone is performed to investigate the effect of viscoelasticity of the earth on great interplate earthquake fault slip. We construct a 2-D viscoelastic FEM model of northeast Japan, which consists of an elastic upper crust and a viscoelastic mantle wedge under gravitation overlying the subducting elastic Pacific plate. Instead of the dislocation model prescribing an amount of slip on a plate interface, we define an earthquake cycle, in which the plate interface down to a depth is locked during an interseismic period and unlocked during coseismic and postseismic periods by changing the friction on the boundary with the master-slave method. This earthquake cycle with steady plate subduction is periodically repeated to calculate the resultant earthquake fault slip.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call