Abstract

Methyl jasmonate (MeJA) was identified as an airborne signal involved in mediating interplant defense response communications over a decade ago. However, how MeJA activates plant defense systems and what becomes of the compound after it has done so has, thus far, remained unknown. To investigate this, Achyranthes bidentata plants were exposed to deuterated methyl jasmonate (d 2MeJA) followed by absolute quantification of metabolic products of d 2MeJA, and emissions of volatile organic compound (VOC) as defensive markers. We found that d 2MeJA was metabolized mainly into deuterated jasmonic acid (d 2JA) and jasmonoyl isoleucine (d 2JA-Ile), and to a much lesser extent, deuterated jasmonoyl leucine (d 2JA-Leu). Increases in d 2JA-Ile/Leu and also endogenous JA-Ile/Leu were tightly co-related with, and significantly influenced the pattern and amount of, VOC emissions. The amount of accumulated d 2JA-IIe was 13.1-fold higher than d 2JA-Leu, whereas the amounts of JA-IIe and JA-Leu accumulated were almost identical. This study demonstrates that exogenous MeJA activates defensive systems (such as VOC emissions) in receiver plants by essentially converting itself into JA and JA-IIe and initiating a signal transduction leading to VOC emissions and induction of endogenous JA-IIe and JA-Leu, which in turn cause further amplification of VOC emissions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.