Abstract

Interplanetary shock parameters are analyzed for solar maximum (year 2000) and solar minimum (years 1995-1996) activity. Fast forward shocks are the most usual type of shock observed in the interplanetary medium near Earth's orbit, and they are 88% of the identified shocks in 2000 and 60% in 1995-1996. Average plasma and magnetic field parameters for upstream and downstream sides of the shocks were calculated, and the parameter variations through the shock were determined. Applications of the Rankine-Hugoniot equations were made, obtaining shock speeds and Alfvenic Mach number. Static and dynamic pressures variations through the shocks were also calculated. Every parameter have larger variation through the shock in solar maximum than in solar minimum, with exception of the proton density. The intensity of shocks relative to the interplanetary medium, quantified by the Alfvenic Mach Number, is observed to be similar in solar maximum and minimum. It could be explained because, during solar maximum, in despite of the higher shock speeds, the Alfvenic speed of the interplanetary medium is higher than in solar minimum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call