Abstract

The results of the interplanetary scintillation observations performed in the period of the maximum of solar activity from April 2013 to April 2014 on the BSA LPI radio telescope at the frequency 111MHz are presented. Fluctuations of the radio emission flux were recorded round the clock for all sources with a scintillating flux of more than 0.2 Jy falling in a strip of sky with a width of 50° over declinations corresponding to a 96-beam directional pattern of the radio telescope. The total number of sources observed during the day reaches 5000. The processing of the observational data was carried out on the assumption that a set of scintillating sources represents a homogeneous statistical ensemble. Daily two-dimensional maps of the distribution of the level of scintillations, whose analysis shows the strong nonstationarity and large-scale irregularity of the spatial distribution of solar wind parameters, were constructed. According to maps of the distribution of the level of scintillations averaged over monthly intervals, the global structure of the distribution of the solar wind was investigated in the period of the maximum of solar activity, which was found to be on the average close to spherically symmetric. The data show that on a spherically symmetric background an east–west asymmetry is observed, which indicates the presence of a large-scale structure of a spiral type in the solar wind.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call