Abstract
Magnetic holes in the interplanetary medium are explained as stationary nonpropagating equilibrium structures in which there are field‐aligned enhancements of the plasma density and/or temperature. Magnetic antiholes are considered to be associated with depressions in the plasma pressure. In this model the observed changes in the magnetic field intensity and direction are due to diamagnetic currents that are carried by ions which drift in a sheath as the result of gradients in the magnetic field and in the plasma pressure within the sheath. The thickness of the sheaths that we consider is approximately a few ion Larmor radii. An electric field is normal to the magnetic field in the sheath. Solutions of Vlasov's equation and Maxwell's equations are presented which account for several types of magnetic holes, including ‘null sheets,’ that have been observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.