Abstract

Within cognitive neuroscience, there is burgeoning interest in how the body is represented in the adult brain. However, there are large gaps in the understanding of neural body representations from a developmental perspective. Of particular interest are the interconnections between somatosensation and vision, specifically infants’ abilities to register correspondences between their own bodies and the bodies of others. Such registration may play an important role in social learning and in engendering feelings of connectedness with others. In the current study, we further explored the interpersonal aspects of neural body representations by examining whether responses to tactile stimulation in 7-month-old infants are influenced by viewing another’s body. During EEG recording, infants (N= 60) observed a live presentation of an experimenter’s hand or foot being touched. During the presentation of touch to the adult’s hand or foot, the infant received a brief tactile touch to their right hand or right foot. This resulted in four conditions: (i) receive hand stimulation/observe hand stimulation, (ii) receive hand stimulation/observe foot stimulation, (iii) receive foot stimulation/observe hand stimulation, and (iv) receive foot stimulation/observe foot stimulation. Analyses compared responses overlying hand and foot regions when the observed limb matched the stimulated limb (congruent) and did not match (incongruent). In line with prior work, tactile stimulation elicited a somatotopic pattern of results in the somatosensory evoked potential (SEP) and the sensorimotor mu rhythm (6–9 Hz). Cross-modal influences were observed in the beta rhythm (11–13 Hz) response and in the late potential of the SEP response (400–600 ms). Beta desynchronization was greater for congruent compared to incongruent conditions. Additionally, tactile stimulation to the foot elicited larger mean amplitudes for congruent compared to incongruent conditions. The opposite was true for stimulation to the hand. This set of novel findings suggests the importance of considering cross-modal effects in the study of neural body representations in the infant brain. Continued work in this new area of infant neuroscience research can inform how interpersonal aspects of body representations may serve to undergird early social learning.

Highlights

  • The term “body representations” can refer to several different kinds of body-related constructs

  • A repeated-measures analysis of variance (ANOVA) of infant looking time was conducted by calculating the percentage of time the infants were looking at the limb when it was visible as opposed to looking elsewhere about the room when a limb was visible

  • The current study examined whether infant neural responses to tactile stimulation of a specific body part were modulated by vision of the corresponding effector of another person

Read more

Summary

Introduction

The term “body representations” can refer to several different kinds of body-related constructs. In studies of human adults, it has been well documented that motor and sensory cortices allowing the control of movement and the registration of touch are activated while observing others moving or being touched (Keysers et al, 2004; Rizzolatti and Craighero, 2004; Singer et al, 2004) and efforts have been made at modeling this (Pitti et al, 2013) This vicarious aspect of sensorimotor processing may draw on interconnections between vision and somatosensation, the study of which could provide insights into the origins and maintenance of interpersonal connectivity in early childhood (Marshall and Meltzoff, 2015; Meltzoff and Marshall, 2018)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call