Abstract

AbstractSimultaneous interpenetrating polymer networks (IPNs) based on poly(butyl methacrylate) and poly(α‐terpineol‐co‐styrene) were synthesized with azobisisobutyronitrile (AIBN) as the initiator and divinyl benzene as the crosslinking agent in xylene under an inert nitrogen atmosphere. Fourier transform infrared spectra provided structural evidence for the IPNs, indicating characteristic frequencies of ester groups of butyl methacrylate at 1723 cm−1 and alcoholic groups of α‐terpineol at 3436 cm−1. Scanning electron microscopy revealed threadlike network structures. Properties such as percentage swelling and average molecular weight between crosslinks were direct functions of the copolymer and initiator (AIBN) concentrations and inverse functions of the monomer (butyl methacrylate) and crosslinking agent (divinyl benzene) concentrations. Differential scanning calorimetry showed an IPN glass‐transition temperature at 80.2°C. The thermal decompositions of the IPNs were established with the help of thermogravimetric analysis. The value of the activation energy, calculated from thermogravimetric analysis with the Coats and Redfern equation, was 23 kJ/mol. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 343–352, 2006

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.