Abstract

A mixture of alginate and polyethylene glycol acrylate was investigated as a system for the encapsulation of islets of Langerhans. This system showed dual crosslinkability: the alginate was ionically crosslinked by multivalent cations, and the PEG was covalently crosslinked by photoactivated free radical polymerization. The major advantage of the dually crosslinkable system was the chemical stability of the resultant gels due to the presence of covalent bonds that maintain the integrity of the gelas opposed to reversible ionic linkages that were the only mode of crosslinkage in previous generations of alginate-based encapsulation systems. The physical aspects of gelation of such alginate/PEG compositions were investigated. Diffusion of dextrans of known molecular weights through these gels was studied in order to shed light on the hydrogel porosity and permeability. In vitro viability and function tests demonstrated that these gels were biocompatible. Islets encapsulated in these systems were healthy and retained both viability and insulin secretory function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.