Abstract

We present the first three-dimensional fully kinetic electromagnetic relativistic particle-in-cell simulations of the collision of two interpenetrating plasma shells. The highly accurate plasma-kinetic particle-in-cell (with the total of 108 particles) parallel code OSIRIS has been used. Our simulations show (1) the generation of long-lived near-equipartition (electro)magnetic fields, (2) nonthermal particle acceleration, and (3) short-scale to long-scale magnetic field evolution, in the collision region. Our results provide new insights into the magnetic field generation and particle acceleration in relativistic and subrelativistic colliding streams of particles, which are present in gamma-ray bursters, supernova remnants, relativistic jets, pulsar winds, etc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.