Abstract

To investigate the relationship between topological types and molecular building blocks (MBBs), we have designed and synthesized a series of three-dimensional (3D) interpenetrating metal-organic frameworks based on different polygons or polyhedra under hydrothermal conditions, namely [Cd(bpib) 0.5(L 1)] ( 1), [Cd(bpib) 0.5(L 2)]·H 2O ( 2), [Cd(bpib) 0.5(L 3)] ( 3) and [Cd(bib) 0.5(L 1)] ( 4), where bpib=1,4-bis(2-(pyridin-2-yl)-1 H-imidazol-1-yl)butane, bib=1,4-bis(1 H-imidazol-1-yl)butane, H 2L 1=4-(4-carboxybenzyloxy)benzoic acid, H 2L 2=4,4′-(ethane-1,2-diylbis(oxy))dibenzoic acid and H 2L 3=4,4′-(1,4-phenylenebis(methylene))bis(oxy)dibenzoic acid, respectively. Their structures have been determined by single crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectra, and thermogravimetric (TG) analyses. Compounds 1– 3 display α-Po topological nets with different degrees of interpenetration based on the similar octahedral [Cd 2(–COO) 4] building blocks. Compound 4 is a six-fold interpenetrating diamondoid net based on tetrahedral MBBs. By careful inspection of these structures, we find that various carboxylic ligands and N-donor ligands with different coordination modes and conformations, and metal centers with different geometries are important for the formation of the different MBBs. It is believed that different topological types lie on different MBBs with various polygons or polyhedra. Such as four- and six-connected topologies are formed by tetrahedral and octahedral building blocks. In addition, with the increase of carboxylic ligands’ length, the degrees of interpenetration have been changed in the α-Po topological nets. And the luminescent properties of these compounds have been investigated in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.