Abstract

Metamaterials derive their unusual properties from their architected structure, which generally consists of a repeating unit cell designed to perform a particular function. However, existing metamaterials are, with few exceptions, physically continuous throughout their volume, and thus cannot take advantage of multi-body behavior or contact interactions. Here we introduce the concept of multi-body interpenetrating lattices, where two or more lattices interlace through the same volume without any direct connection to each other. This new design freedom allows us to create architected interpenetrating structures where energy transfer is controlled by surface interactions. As a result, multifunctional or composite-like responses can be achieved even with only a single print material. While the geometry defining interpenetrating lattices has been studied since the days of Euclid, additive manufacturing allows us to turn these mathematical concepts into physical objects with programmable interface-dominated properties. In this first study on interpenetrating lattices, we reveal remarkable mechanical properties including improved toughness, multi-stable/negative stiffness behavior, and electromechanical coupling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.