Abstract

Using a method based on the generating functional plus a kind of ``correspondence principle''---which acts as a bridge between the electromagnetic and scalar fields---it is shown that the interparticle potential energy concerning a given $D$-dimensional electromagnetic model can be obtained in a simple way from that related to the corresponding scalar system. The $D$-dimensional electromagnetic potential for a general model containing higher derivatives is then found from the corresponding scalar one and the behavior of the former is analyzed at large as well as small distances. In addition, we investigate the presence of ghosts in the four-dimensional version of the potential associated with the model above and analyze the reason why the Coulomb singularity is absent from this system. The no-go theorem by Ostrogradski is demystified as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.