Abstract

PE microgels were prepared from mechanical fragmentation and from immiscible blends of PS and PE. The surface topology of microgels obtained from mechanical fragmentation was hypothesized to consist of long linear PE chains that are capable of interparticle co-crystallization as suggested by low-strain oscillatory shear experiment results. To investigate this hypothesis, PE microgels with a smooth surface and a PS corona were prepared using immiscible blends of PE and PS, followed by removal of the PS matrix. The rheological response of suspensions of PE microgels with a PS corona in squalane was similar to suspensions of PE microgels with crystallizable surface chains whereby the system would gel and exhibit hysteresis upon a cooling and heating cycle. Suspensions of PE microgels without any surface chains, however, were reversible over multiple cooling and heating cycles. It was determined that the PS corona and the cross-link density of the microgels had an effect (p < 0.01) on the reversibility whereas the microgel concentration in the suspension did not (p = 0.82).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.