Abstract

The medicinal value of the monoterpenoid indole alkaloids (MIAs) such as 3′,4′-anhydrovinblastine, as well as their chemical complexity have stimulated extensive efforts to understand the biochemical and molecular pathways involved in their biosynthesis in plants such as Catharanthus roseus, Rawvolfia serpentina and others. Ethyl methane sulphonate (EMS) mutagenesis has been used successfully together with simple MIA thin layer chromatography screening to identify C. roseus mutants with altered MIA profiles. This study describes the isolation of very low iridoid and MIA containing C. roseus mutant (M2-1582) that accumulates MIAs when the plant is provided with secologanin by feeding mutant roots or by grafting the mutant scion onto wild type roots. The observed low iridoid and MIA content was correlated with lowered expression of BIS1/BIS2 transcription factors and several genes involved in secologanin biosynthesis that are expressed in internal phloem parenchyma cells of leaves. When exogenous secologanin was applied to the roots of the mutant plant, secologanin levels rose more than 13-fold, while two major MIAs catharanthine and vindoline rose more than 8- and 4- fold, respectively. Grafting the mutant on WT stocks led to 27-, 11- and 27-fold increases in secologanin, catharanthine and vindoline, respectively in leaves of the scion one week after graft initiation. Other minor MIAs (serpentine, anhydrovinblastine, vindolidine, deacetylvindoline, tabersonine and 16-methoxytabersonine) that were not detected in the mutant, became detectable in leaves of the scion. These results provide strong evidence for a secologanin transport mechanism that mobilizes this iridoid between different plant organs in C. roseus and that secologanin transport to the mutant across the graft union permits the formation of MIAs in leaves of the mutant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.