Abstract

We study the superconducting gap function of Sr$_2$RuO$_4$. By solving the linearized Eliashberg equation with a correlated pairing vertex extracted from a dynamical mean-field calculation we identify the dominant pairing channels. An analysis of the candidate gap functions in orbital and quasiparticle band basis reveals that an inter-orbital singlet pairing of even parity is in agreement with experimental observations. It reconciles in particular the occurrence of a two-component order parameter with the presence of line-nodes of quasiparticles along the c-axis in the superconducting phase. The strong angular dependence of the gap along the Fermi surface is in stark contrast to its quasi-locality when expressed in the orbital basis. We identify local inter-orbital spin correlations as the driving force for the pairing and thus reveal the continuation of Hund's physics into the superconducting phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.