Abstract

AbstractThe tolerance-cost optimization plays a central role in the design of industrial components, due to its implications in all production stages. To reduce development times and increase product quality, the systematic application of tolerance-cost optimization from the early design phases requires a deep knowledge of the tolerance effects on both product performance and production cost. However, many factors still hamper its industrial diffusion, comprising three improvement areas: data and parameters sharing, flexibility to application complexity, and integration of simulation tools. Data and parameters sharing are a key factor since directly affect the representation and information transfer of tolerances and manufacturing processes. Both tolerances-cost relations and optimization structure must be properly represented, through a knowledge modelling framework. The present paper introduces an interoperability framework for the Computer-Aided tolerance-cost optimization. Through creating instances for tolerance and manufacturing process information, the interoperability is implemented defining a systematic sequence of steps to breakdown the multi-disciplinary optimization structure. Starting from the assembly structure, with the extraction of information from the 3D models to its transfer for parametric modelling into tolerance simulation and cost estimation environments, the interoperability framework identifies input-output relations and highlights the integration provided by multi-disciplinary optimization structure. The application of the presented framework on an archetypal case study provides an analysis of the suitability of the method, highlighting the further improvements. In this way it is possible to improve the interoperability between design and simulation virtual environments, to optimize tolerances in a concurrent a multi-disciplinary manner.KeywordsTolerance-cost optimizationTolerance designCost estimationModel based definitionMulti-disciplinary optimization

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call