Abstract

Our objective was to determine whether the influence of linear perspective cues and texture gradients in the perceptual rescaling of stimulus size transfers from one eye to the other. In experiment 1, we systematically added linear perspective cues and texture gradients in a background image of the corridor illusion. To determine whether perceptual size rescaling takes place at earlier or later stages, we tested how the perceived size of top and bottom rings changed under binocular (rings and background presented to both eyes), monocular (rings and background presented to the dominant eye only), and dichoptic (rings and background presented separately to the dominant and nondominant eyes, respectively) viewing conditions. We found differences between viewing conditions in the perceived size of the rings when linear perspective cues, but not texture gradients, were presented. Specifically, linear perspective cues produced a stronger illusion under the monocular compared to the dichoptic viewing condition. Hence, there was partial interocular transfer from the linear perspective cues, suggesting a dominant role of monocular neural populations in mediating the corridor illusion. In experiment 2, we repeated similar procedures with a more traditional Ponzo illusion background. Contrary to findings from experiment 1, there was a full interocular transfer with the presence of the converging lines, suggesting a dominant role of binocular neural populations. We conclude that higher order visual areas, which contain binocular neural populations, are more involved in the perceptual rescaling of size evoked by linear perspective cues in the Ponzo compared to the corridor illusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call