Abstract

Leg lengthening procedure is used increasingly to treat leg length discrepancy and some forms of dwarfism. We investigated adaptation in rat sciatic nerve to the gradual nerve elongation that occurs with leg lengthening. Indirect nerve elongation was produced by leg lengthening by a total of 15, 30, 45, or 70 mm at a rate of 1 mm/day. One day after leg lengthening completion, transverse semithin sections of sciatic nerve were prepared and examined; a teased-fiber study also was performed. Elongation decreased axon diameter, but not significantly. In teased-fiber preparations, internodal length was increased by 93%, and the longest internode measured 3000 μm after leg lengthening by 70 mm. Slopes of fiber diameter–internodal length regression lines increased with increasing elongation. Paranodal demyelination caused by nerve elongation worsened as elongation increased, stimulating remyelination (i.e., intercalation of a segment). Only 0.8% of axons showed degeneration in the group with 70 mm of elongation. We concluded that adult rat sciatic nerve can adapt itself to leg lengthening procedure with even doubling internodal length.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.