Abstract

Dwarf pea (Pisum sativum L.) plants with genotypes cryc and crys responded differently when an 8 h photoperiod (8 h daylight, 16 h dark) was extended to 24 h (8 h daylight, 16 h incandescent light). Genotype cryc showed up to a 4‐fold increase in internode length, sustained by increases in both cell length (particularly of epidermal cells) and cell number (particularly of cortical cells) while crys plants showed up to a 2‐fold increase in internode length sustained mostly by an increase in cell number. Under an 8 h (daylight) photoperiod the two genotypes did not differ in their sensitivity to applied gibberellin A1 (GA1) and they showed a similar pattern of response. GA1 significantly increased internode length, cell length and cell number in both genotypes. Incandescent light did not increase the size of the response to GA1 except for crys plants at high dose rates of GA1 (29–58 nmol). At saturating doses of GA1 the two genotypes attained a similar peak internode length; incandescent light increased the peak by about 40%. GA1 increased the rate of leaf appearance by up to 33% while incandescent light reduced the rate by 4–7%. The elongation response of the more mature internodes of cryc plants to GA1 or incandescent light was due primarily to an increase in cell length whereas increased cell number made a significant contribution in the case of internodes which were relatively immature at the time the stimulus was applied. The progressive increase in internode length of both genotypes during ontogeny was due primarily to an increase in cell number. In conclusion, alleles cryc and crys (background le La) do not confer a difference in sensitivity to GA1 and the increase in internode length in response to incandescent light is probably not the result of a real or perceived increase in GA1 level. Allele crys may partially block a phytochrome mediated response to light and the key difference between genotypes crys and cryc may lie in the greater elongation (extensibility?) of cryc epidermal cells in incandescent light.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call