Abstract

Recent optical recordings of transmembrane potentials in the axons of pyramidal neurons have shown that the internodal action potentials (APs) predicted in our previous studies do exist. These novel processes are not well understood. In this study we aim to clarify electrical phenomena in peripheral myelinated axons (MAs). We used a multi-cable Hodgkin-Huxley-type model to simulate MAs with potassium channels that were either normal or inhibited along a short region of the internodal membrane. A brief stimulus was applied to the first node. We demonstrated peculiarities in the internodal APs induced by a saltatory AP: They existed across internodal membranes, were detectable in periaxonal space but not in intracellular space, propagated continuously, collided near the mid-internodes, and produced internodal sources of afterdischarges. These results highlight the importance of the MA internodal regions as new therapeutic targets for avoiding afterdischarges provoked by reduced axonal fast potassium channel expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.