Abstract

Interneurons, gamma-aminobutyric acid (GABA)(A) receptor density, and subunit composition determine inhibitory function in pyramidal neurons and control excitability in cortex. Abnormalities in GABAergic cells or GABA(A) receptors could contribute to seizures in malformations of cortical development. Herein we review data obtained in resected cortex from pediatric epilepsy surgery patients with type I and type II cortical dysplasia (CD) and non-CD pathologies. Our studies found fewer interneurons immunolabeled for glutamic acid decarboxylase (GAD) in type II CD, whereas there were no changes in tissue from type I CD. GAD-labeled neurons had larger somata, and GABA transporter (VGAT and GAT1) staining showed a dense plexus surrounding cytomegalic neurons in type II CD. Functionally, neurons from type I CD tissue showed GABA currents with increased half maximal effective concentration compared to cells from the other groups. In type II CD, cytomegalic pyramidal neurons showed alterations in GABA currents, decreased sensitivity to zolpidem and zinc, and increased sensitivity to bretazenil. In addition, pyramidal neurons from type II CD displayed higher frequency of spontaneous inhibitory post synaptic currents. The GABAergic system is therefore, altered differently in cortex from type I and type II CD patients. Alterations in zolpidem, zinc, and bretazenil sensitivity and spontaneous inhibitory postsynaptic currents (IPSCs) suggest that type II CD neurons have altered GABA(A) receptor subunit composition and receive dense GABA inputs. These findings support the hypothesis that patients with type I and type II CD will respond differently to GABA receptor-mediated antiepileptic drugs and that cytomegalic neurons have features similar to immature neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.