Abstract
The heterogeneity of gamma-aminobutyric acid interneurons in the rodent neocortex is well-established, but their classification into distinct subtypes remains a matter of debate. The classification of interneurons in the primate neocortex is further complicated by a less extensive database of the features of these neurons and by reported interspecies differences. Consequently, in this study we characterized 8 different morphological types of interneurons from monkey prefrontal cortex, 4 of which have not been previously classified. These interneuron types differed in their expression of molecular markers and clustered into 3 different electrophysiological classes. The first class consisted of fast-spiking parvalbumin-positive chandelier and linear arbor cells. The second class comprised 5 different morphological types of continuous-adapting calretinin- or calbindin-positive interneurons that had the lowest level of firing threshold. However, 2 of these morphological types had short spike duration, which is not typical for rodent adapting cells. Neurogliaform cells (NGFCs), which coexpressed calbindin and neuropeptide Y, formed the third class, characterized by strong initial adaptation. They did not exhibit the delayed spikes seen in rodent NGFCs. These results indicate that primate interneurons have some specific properties; consequently, direct translation of classification schemes developed from studies in rodents to primates might be inappropriate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.