Abstract

Radon gas is a harmful pollutant with a well-documented adverse influence on public health. In poorly ventilated environments, that are often prone to significant radon levels, studies indicate a known relationship between human radon exposure and lung cancer. Recent technology advances, notably on the Internet of Things (IoT) ecosystem, allow the integration of sensors, computing, and communication capabilities into low-cost and small-scale devices that can be used for implementing specific cyber-physical systems (CPS) for online and real-time radon management. These technologies are crucial for improving the overall building indoor air quality (IAQ), contributing toward the so-called cognitive buildings, where human-based control is tending to decline, and building management systems (BMS) are focused on balancing critical factors, such as energy efficiency, human radon exposure management, and user experience, to achieve a more transparent and harmonious integration between technology and the built environment. This work surveys recent IoT technologies for indoor radon exposure management (monitoring, assessment and mitigation), and discusses its main challenges and opportunities, by focusing on methods, techniques, and technologies to answer the following questions: (i) What technologies have been recently in use for radon exposure management; (ii) how they operate; (iii) what type of radon detection mechanisms do they use; and (iv) what type of system architectures, components, and communication technologies have been used to assist the referred technologies. This contribution is relevant to pave the way for designing more intelligent and sustainable systems that rely on IoT and Information and Communications Technology (ICT), to achieve an optimal balance between these two critical factors: human radon exposure management and building energy efficiency.

Highlights

  • Radon is a radioactive gas considered as the leading cause of lung cancer among non-smokers, according to studies on indoor radon conducted in Europe, North America, and Asia

  • According to the World Health Organization (WHO), up to 30% of European buildings built between the 1970s and 1980s are likely to suffer from this type of syndrome, with possible sources of contamination being both pollutants that come from the outdoor air and those generated indoors [43]

  • The contribution of this research is relevant to pave the way for designing more intelligent and sustainable systems that rely on Internet of Things (IoT) and Information and Communications Technology, to achieve an optimal balance between these two critical factors: human radon exposure management and building energy efficiency [60,61,62,63,64]

Read more

Summary

Introduction

Radon is a radioactive gas considered as the leading cause of lung cancer among non-smokers, according to studies on indoor radon conducted in Europe, North America, and Asia. These studies show that lung cancer due to indoor radon exposure may range from 3% to 14% of all population [1,2]. The main goal is to systematize recent advances in the design of Cyber-Physical Systems that take advantage of IoT technologies for radon risk management, which are of great value for integrating the so-called cognitive buildings, and contributing to the reduction of occupants’ exposure to radon gas

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call