Abstract

The rapid increase in the pervasiveness of digital devices, combined with their heterogeneous nature, has culminated in increasing volumes of diverse data, a.k.a. big data that can become subject to criminal or civil investigations. This growth in big digital forensic data (DFD) has forced digital forensic practitioners (DFPs) to consider seizing a wider range of devices and acquiring larger volumes of data that can be pertinent to the case being investigated. This, in turn, has created an immense backlog of cases for law enforcement agencies worldwide. The method of data reduction by targeted imaging, combined with a robust process model, however, can assist with speeding up the processes of data acquisition and data analysis in IoT device forensic investigations. To this end, we propose an IoT forensic investigation process model, IoT-FIPM, that can facilitate not only the reduction of the evidentiary IoT data, but also a timely acquisition and analysis of this data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.