Abstract

Solving linear systems of equations stands as one of the fundamental challenges in linear algebra, given their prevalence across various fields. The demand for an efficient and rapid method capable of addressing diverse linear systems remains evident. In scenarios involving large and sparse systems, iterative techniques come into play to deliver solutions. This research paper contributes by introducing a refinement to the existing Jacobi method, referred to as the "Third Refinement of Jacobi Method." This novel iterative approach exhibits its validity when applied to coefficient matrices exhibiting characteristics such as symmetry, positive definiteness, strict diagonal dominance, and -matrix properties. Importantly, the proposed method significantly reduces the spectral radius, thereby curtailing the number of iterations and substantially enhancing the rate of convergence. Numerical experiments were conducted to assess its performance against the original Jacobi method, the second refinement of Jacobi, and the Gauss-Seidel method. The outcomes underscore the "Third Refinement of Jacobi" method's potential to enhance the efficiency of linear system solving, thereby making it a valuable addition to the toolkit of numerical methodologies in scientific and engineering domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.