Abstract

This paper presents the operation of a remotely controlled, wheel-legged robot. The developed Wi-Fi connection framework is established on a popular ARM microcontroller board. The implementation provides a low-cost solution that is in congruence with the newest industrial standards. Additionally, the problem of limb structure and motor speed control is solved. The design process of the mechanical structure is enhanced by a nature-inspired metaheuristic optimization algorithm. An FOC-based BLDC motor speed control strategy is selected to guarantee dynamic operation of the drive. The paper provides both the theoretical considerations and the obtained prototype experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.