Abstract

In December 2019, the International Association of Geomagnetism and Aeronomy (IAGA) Division V Working Group (V-MOD) adopted the thirteenth generation of the International Geomagnetic Reference Field (IGRF). This IGRF updates the previous generation with a definitive main field model for epoch 2015.0, a main field model for epoch 2020.0, and a predictive linear secular variation for 2020.0 to 2025.0. This letter provides the equations defining the IGRF, the spherical harmonic coefficients for this thirteenth generation model, maps of magnetic declination, inclination and total field intensity for the epoch 2020.0, and maps of their predicted rate of change for the 2020.0 to 2025.0 time period.

Highlights

  • The International Geomagnetic Reference Field (IGRF)is a set of spherical harmonic coefficients which can be input into a mathematical model in order to describe the large-scale, time-varying portion of Earth’s internal magnetic field between epochs 1900 A.D. and the present

  • In order to account for temporal changes on timescales of a few years, the IGRF is regularly revised, typically every 5 years

  • Past generations of IGRF models are archived at https://www.ngdc

Read more

Summary

Introduction

The International Geomagnetic Reference Field (IGRF)is a set of spherical harmonic coefficients which can be input into a mathematical model in order to describe the large-scale, time-varying portion of Earth’s internal magnetic field between epochs 1900 A.D. and the present. Each generation is composed of a set of model coefficients representing the internal time-varying geomagnetic field, which are provided in Geomagnetic Reference Model (DGRF) or as an IGRF. Past generations of IGRF models are archived at https://www.ngdc.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.