Abstract

ObjectivesThe use of online imagery by non-local observers to conduct remote, centralized collection of streetscape audit data in international studies has the potential to enhance efficiency of collection and comparability of such data for research on built environments and health. The objectives of the study were to measure (1) the consistency in responses between local in-field observers and non-local remote online observers and (2) the reliability between in-country online observers and non-local remote online observers using the Microscale Audit of Pedestrian Streetscapes Global tool to characterize pedestrian-related features along streets in five countries.MethodsConsistency and inter-rater reliability were analyzed between local and non-local observers on a pooled database of 200 routes in five study regions (Melbourne, Australia; Ghent, Belgium; Curitiba, Brazil; Hong Kong, China; and Valencia, Spain) for microscale environmental feature subscales and item-level variables using the intraclass correlation coefficient (ICC).ResultsA local in-field versus remote online comparison had an ICC of 0.75 (95 % CI: 0.68–0.80) for the grand total score. An ICC of 0.91 (95 % CI: 0.88–0.93) was found for the local online versus remote online comparison. Positive subscales yielded stronger results in comparison to negative subscales, except for the similarly poor-performing positive aesthetics/social characteristics.ConclusionsThis study demonstrated remote audits of microscale built environments using online imagery had good reliability with local in-field audits and excellent reliability with local online audits. Results generally supported remote online environmental audits as comparable to local online audits. This identification of low-cost and efficient data acquisition methods is important for expanding research on microscale built environments and physical activity globally.

Highlights

  • Greater international attention is being paid to the role the built environment has on physical activity, obesity, and cardiometabolic health [1, 2]

  • Residential Addresses This study used cross-sectional microscale built environment data primarily acquired as part of the International Physical Activity and Environment Network (IPEN) Adolescent study

  • Similar to the results found by Cain et al, both positive and negative aesthetics and social characteristics had low intraclass correlation coefficient (ICC) scores for both comparisons, which may reflect the fact that these characteristics often unintentionally introduce more subjectivity in observer responses [11]

Read more

Summary

Introduction

Greater international attention is being paid to the role the built environment has on physical activity, obesity, and cardiometabolic health [1, 2]. Microscale environmental features comprise detailed design characteristics (both quantity and quality) along street block faces or segments (e.g., street amenities like benches and bicycle racks, presence of trees, building setbacks), sidewalks, intersection configuration (e.g., curbs, crosswalks, signalization), types of land use (e.g., residential, commercial, industrial) and traits of the local social environment (e.g., litter, graffiti, and landscaping maintenance) [12]. In-field data collection may be adversely impacted by local environmental conditions, such as high crime, traffic-related safety conditions or air pollution, and unfavorable weather conditions, including inclement weather and extreme heat or cold. These expenses and local conditions can limit the scale of research on microscale built environments globally [17]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call