Abstract
Rice is one of the most important crops in the world. The rice community needs to cooperate and share efforts and resources so that we can understand the functions of rice genes, especially those with a role in important agronomical traits, for application in agricultural production. Mutation is a major source of genetic variation that can be used for studying gene function. We will present here the status of mutant collections affected in a random manner by physical/chemical and insertion mutageneses.As of early September 2013, a total of 447, 919 flanking sequence tags from rice mutant libraries with T-DNA, Ac/Ds, En/Spm, Tos17, nDART/aDART insertions have been collected and publicly available. From these, 336,262 sequences are precisely positioned on the japonica rice chromosomes, and 67.5% are in gene interval. We discuss the genome coverage and preference of the insertion, issues limiting the exchange and use of the current collections, as well as new and improved resources. We propose a call to renew all mutant populations as soon as possible. We also suggest that a common web portal should be established for ordering seeds.
Highlights
Rice (Oryza sativa) is one of the most important crops in the world
The use of PCR-based methods for systematic sequencing of chromosomal regions flanking insertion points has facilitated direct in silico access to mutant seed stocks via dedicated and user-friendly genome navigators such as Rice GE and OrygenesDB
The ability to generate at a high throughput lesions in the genome guided by sequence-specific single guide RNA complementary to the target DNA and to multiplex such sgRNA in a single transfection using a universal Cas9 nuclease module opens new avenue to generate novel resources that systematically target genes having no insert or no alleles in existing mutant collections
Summary
Rice (Oryza sativa) is one of the most important crops in the world. Rice, wheat, and maize together account for 60% of the world’s food production, and rice is the principal food of nearly 50% of the world’s population. The use of PCR-based methods for systematic sequencing of chromosomal regions flanking insertion points has facilitated direct in silico access to mutant seed stocks via dedicated and user-friendly genome navigators such as Rice GE and OrygenesDB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.