Abstract

Detailed uncertainty reporting is imperative for proficiency tests and comparison exercises because uncertainties need to be comparable and trusted by all the participants. Even though participants do their best to follow the Guide to the Expression of Uncertainty in Measurement, ambiguities and divergences about uncertainty evaluation remain. Consequently, to analyze the situation, the CCRI (II) Uncertainties Working Group proposed a comparison exercise (CCRI(II)-S7) about the uncertainty evaluation of a relatively simple primary activity measurement: the standardization of a 60Co source by coincidence counting.To be able to understand how various NMIs calculate coincidence counting uncertainties, our study focused on two of the dominant uncertainty components commonly quoted for 4πβ-γ coincidence counting in the International Reference System (SIR) submissions and Key Comparison exercises: efficiency-extrapolation and weighing. Participants from twelve different laboratories were sent the same set of measurement data from the analysis of a 60Co solution standardized at the National Physical Laboratory (NPL). Our study demonstrated the extent of the different interpretations of the uncertainty components. Some factors causing large discrepancies were isolated and are discussed. Further studies of other techniques using a similar approach would be beneficial for the metrology community. Main text.To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/.The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.