Abstract

In this work, we report the fabrication of hierarchical nanofiber bundles from a perylene monoimide molecule that enable the sensitive detection of various inert volatile organic compounds (VOCs). We demonstrate that the internanofiber spacing of the bundles with appropriate packing interactions can be effectively adjusted by various VOCs, which is in turn translated into the dynamic fluorescence responses. Upon further decreasing the size of the nanofiber bundles, of which the internanofiber spacing is more favorably adjusted, enhanced fluorescence responses to various VOC vapors can be achieved. Our work presents a new protocol, i.e., translating the stimuli-responsive internanofiber spacing into fluorescence responses, to construct novel fluorescence sensors for various hazardous chemical vapors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.