Abstract

Repetitive and iterative learning control are two modern control strategies for tracking systems in which the signals are periodic in nature. This paper discusses repetitive and iterative learning control from an internal model principle point of view. This allows the formulation of existence conditions for multivariable implementations of repetitive and learning control. It is shown that repetitive control can be realized by an implementation of a robust servomechanism controller that uses the appropriate internal model for periodic distrubances. The design of such controllers is discussed. Next it is shown that iterative learning control can be implemented in the format of a disturbance observer/compensator. It is shown that the resulting control structure is dual to the repetitive controller, and that both constitute an implementation of the internal model principle. Consequently, the analysis and design of repetitive and iterative learning control can be generalized to the powerful analysis and design procedure of the internal model framework, allowing to trade-off the convergence speed for periodic-disturbance cancellation versus other control objectives, such as stochastic disturbance suppression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.