Abstract

Parkinson’s disease is a neurodegenerative disorder with a complex etiology coming from interactions between genetic and environmental factors. Research on Parkinson’s disease genetics has been an effortful struggle, while new technologies and novel study designs served as indispensable boosters. Until now, 90 loci and 20 disease-causing gene mutations have been identified. In this study we describe a novel non-parametric approach to GWAS meta-analysis and its application in PD genetics.A literature search was conducted to identify Genome-Wide Association Studies (GWAS) regarding Parkinson’s disease. We applied predefined inclusion criteria and extracted the reported SNPs and their respective position and statistical significance. We divided all chromosomes in approximately equal genetic distance segments called bins and recorded the most significant SNP from each bin and each study and ranked them in terms of their p-value. Ranks from each bin were summed, averaged and added in a heterogeneity-based analysis using the METRADISC-XL software. Weighted and unweighted analysis was performed.Five-hundred and forty-three SNPs and their respective p-values from 15 studies were matched in their corresponding bins. The METRADISC-XL analysis resulted in 7 bins with a significant p-value. A bin on chromosome 4 where the SNCA gene is located found with genome-wide significant association with Parkinson’s Disease.This is the first time a non-parametric method is applied in GWAS meta-analysis. The results add some insight on the overall understanding of Parkinson’s disease genetics and serve as a first step of further convergent analysis with Genome-wide linkage studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.