Abstract
Low-density lipoproteins (LDL) labeled with indium via a lipid-chelating agent, the bis(stearylamide) of diethylenetri-aminepentaacetic acid (L), were evaluated as a potential radiopharmaceutical (111In-L-LDL) for tumor localization by studying their internalization in human pancreatic cancer cells (Capan-1). Using Dil-LDL (1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine perchlorate-LDL), this cell line was shown to bind human LDL with a high-affinity saturable component and a low-affinity non-saturable (40%) component. The single saturable high-affinity binding site had a KD of 27.5 +/- 2.1 micrograms/ml and a maximal binding of 610 +/- 7.5 ng/ml protein. Electron-microscopic examination of the In-L-LDL particles revealed the peripheral distribution of the electron-dense indium atoms at the outer surface of LDL. The modified LDL were then shown to be internalized by the cells. After conjugation of In-L-LDL to colloidal gold to follow the different stages of internalization, electron-microscopic examination showed that the In-L-LDL gold conjugates were stuck to the external sheet of the plasma apical and microvilli membrane, into earlier and later endosomes and into multivesicular bodies, suggesting the penetration of the In-L-LDL particles into lysosomal vacuoles. The observation of In-L-LDL-gold conjugates in deep-seated cytoplasm suggests that LDL could be employed as a drug-transport vehicle for targeting cytotoxics or radionuclides close to the cell nucleus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.