Abstract
This study quantified the agonist-induced endocytotic and recycling events of the mammalian gonadotropin releasing hormone receptor (GnRH-R) and investigated the role of the intracellular carboxyl (C)-terminal tail in regulating agonist-induced receptor internalization kinetics. The rate of internalization for the rat GnRH-R was found to be exceptionally low when compared with G-protein coupled receptors (GPCRs) which possess a cytoplasmic C-terminal tail (thyrotropin-releasing hormone receptor (TRH-R), catfish GnRH-R (cfGnRH-R) and GnRH/TRH-R chimeric receptor). These data provide evidence that the presence of a functional intracellular cytoplasmic C-terminal tail is essential for rapid internalization of the studied GPCRs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.