Abstract

The presence of neuropeptide receptors on the plasma membrane is well accepted, as is its internalization and down-regulation. The analysis of the fate of these peptides within their target-cells is difficult. Endogenous peptides or administered native peptides are visualized in these cells using immunocytology after cryoultramicrotomy. Labelled peptides can be injected and their internalization kinetics studied using ultrastructural autoradiography. The pituitary gland is a suitable model for the study of the neuropeptide mechanism, with the lactotroph function being taken as an example in the present case. Prolactin (PRL) release depends on two main neuropeptides: thyrotropin-releasing hormone (TRH) and somatostatin (SS). The TRH immunoreactivity obtained from endogenous as well as injected material was restricted to the plasma membrane, secretory granules, cytoplasmic matrix and nucleus. The internalization kinetics of exogenous native TRH showed an increase of immunoreactive material in all compartments including the nucleus. The endogenous SSs (SS14 and SS28) were detected in the same subcellular lactotroph compartments. Injection of 125I-SS showed a rapid binding of SS at the plasma membrane level before internalization. For 60 min of in vivo uptake, 125I-SS28, the large SS molecule, was detected in the cytoplasm only, while 125I-SS14 was found in the nuclear matrix. In vitro 125I-SS28 was restricted to the nuclear membrane. Under physiological conditions the endogenous neuropeptides were visualized in the nucleus, but after injection of labelled peptides only small molecules were found in the nucleus. The significance of the presence of these neuropeptides is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call