Abstract
Composite vertical shear spectra of Gargett et al. (1981) and composite vertical temperature-gradient spectra of Gregg (1977) are compared with the fossil-turbulence model of Gibson (1980–6). Both the shear and temperature-gradient spectra show high-wavenumber microstructure bumps which are identified by Gargett et al. (1981) and Gregg (1980) as due to turbulence in the fluid at the time of measurement. However, using γ [ges ] 5N as the criterion for turbulence to exist in a stratified fluid, where γ is the rate of strain and N is the Brunt-Vaisala frequency, the largest-scale fluctuations of the microstructure bumps may actually be remnants of previous turbulence persisting in fluid that is no longer turbulent at these scales: such fluctuations are termed fossil vorticity turbulence (a class of internal waves) and fossil temperature turbulence respectively. Both composite spectra exhibit k−1 subranges which are identified by their low amplitudes as subsaturated (two-three)-dimensional internal waves and resulting temperature fine structure by comparison with saturated three-dimensional internal-wave subranges proposed by Gibson (1980):7N2k−1 for the saturated vertical shear spectrum and , also indicating extreme undersampling of the turbulence and mixing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.