Abstract

AbstractIn a series of large-eddy simulations with different forcing, we study the generation of internal gravity waves at the base of the surface mixed layer. If turbulent eddies act as obstacles and undulate the base of the mixed layer, horizontal velocities associated with inertial oscillations and Ekman dynamics can move the obstacles relative to the stratified interior, exciting internal gravity waves similar to lee waves. We find strong evidence that the “obstacle mechanism” is able to excite large parts of the internal wave spectrum, including near inertial waves. The high-frequency part of the excited wave spectrum is filtered by the increased stratification in the transition layer between the mixed layer and lower stratified interior, but a substantial part of the wave spectrum is able to overcome this barrier, hence contributing to interior mixing. The magnitude of the downward-radiated energy below the transition layer depends on the source of turbulence, but we show that the obstacle mechanism, especially under destabilizing heat fluxes, has the potential to contribute considerably to the internal wave energy in the interior ocean.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call