Abstract

The generation process of internal waves by strong tidal flow over a continental shelf slope is reproduced using a multi-level numerical model. On the basis of the numerical results, the crucial role of the tidal advection effect in the generation process of internal waves is demonstrated. The close relation between the resulting internal waveform and the strength of the tidal advection effect is also examined. The barotropic forcing on the internal wave actually works within a relatively small horizontal scale over the top of the continental shelf slope. When the maximum internal Froude number at the shelf break (Frm) is less than about 0.6, the amplitude of the resulting internal wave is almost proportional to Frm. When Frm is more than about 0.6, however, the amplitude of the resulting internal wave becomes larger than predicted by linear theory. In particular, when Frm is more than unity, the time period during which the shoreward propagating internal wave stays in the barotropic forcing region becomes much longer. Consequently, the internal wave is significantly amplified with the horizontal scale approaching that of the barotropic forcing, which concentrates in a relatively small region over the top of the continental shelf slope.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call