Abstract

Three one-year simulations generated with the Canadian RCM (CRCM) are compared to each other in order to study internal variability in nested regional climate models and to evaluate the influence exerted by the lateral boundaries information supplied by the nesting procedure. All simulations are generated over a large domain and cover an annual cycle. The simulations use different combinations of surface and atmospheric initial conditions but all of them share the same set of time-dependent lateral boundary conditions taken from a simulation by the Canadian GCM. A first simulation is used as control, the second simulation is launched with different atmospheric and surface initial conditions (IC) and the third simulation is launched taking its surface IC from the control simulation. Comparison of the root-mean-square differences (RMSD) between each pair of simulations shows two distinct seasonal behaviours in the time series of the RMSD. In winter all simulations are almost identical to each other resulting in very low RMSD values while in summer large discrepancies develop between pairs of simulations. For water vapour related fields such as precipitation or specific humidity, these discrepancies are sometimes as large as the monthly averaged variability. However, analysis of the climate statistics shows that, although the evolution of the various summer weather systems is different, the climates of each simulation are similar.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.