Abstract

Fungal spoilage remains a significant issue in dairy product quality, especially for cultured dairy products such as yogurt formulated without preservatives such as potassium sorbate. Fungal contamination can occur throughout the processing continuum, from the dairy farm environment to the finished product processing environment. As molecular characterization of fungal isolates is used more frequently, we obtained fungal isolates obtained in 2 yogurt processing facilities as part of routine fungal testing of raw materials (e.g., fruit preparations, added ingredients), in-process product samples, environmental samples (e.g., air plates, equipment surfaces such as valves, face plates, air nozzles), and finished product samples, to determine whether internal transcribed spacer (ITS) barcoding data would be helpful to support source tracking of fungal contamination issues. Internal transcribed spacer PCR amplification and sequencing allowed us to classify the 852 isolates from these 2 facilities into 200 unique ITS allelic types (AT), representing the phyla Ascomycota (743 isolates), Basidiomycota (97 isolates), and Mucoromycota (12 isolates). Thirty ITS AT were isolated from both facilities; 62 and 108 ITS AT were isolated from only facility A or only facility B, respectively. Nine ITS AT were each represented by more than 20 isolates; these AT comprised 53% of the 852 isolates. The considerable diversity of fungal isolates even within a single facility illustrates the challenge associated with controlling fungal contamination of dairy products. The ITS barcoding technique, however, did show promise for facilitating the source tracking of fungal contamination, particularly for ITS AT over-represented in a given facility. For example, we found evidence for equipment-specific reservoirs for 2 AT (14 and 219) in facility B. Our data suggest that despite its limited discriminatory power, ITS sequencing can provide initial information that can help trace fungal contamination along the processing continuum. However, development and implementation of discriminatory subtyping methods will be needed to further improve the ability to identify sources of fungal contamination in dairy facilities. Developing and implementing sampling plans that comprehensively capture yeast and mold diversity in a given processing facility remain a considerable challenge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call