Abstract

We investigated patterns of nucleotide polymorphism in the internal transcribed spacer (ITS) region for Sphaeropsis visci, a hyperparasitic fungus that causes the leaf spot disease of the hemiparasite European mistletoe (Viscum album). Samples of S. visci were obtained from Hungary covering all major infected forest areas. For obtaining PCR products we used a fast and efficient direct PCR approach based on a high fidelity DNA polymerase. A total of 140 ITS sequences were subjected to an array of complementary sequence analyses, which included analyses of secondary structure stability, nucleotide polymorphism patterns, GC content, and presence of conserved motifs. Analysed sequences exhibited features of functional rRNAs. Overall, polymorphism was observed within less conserved motifs, such as loops and bulges, or, alternatively, as non-canonical G–U pairs within conserved regions of double stranded helices. The secondary structure of ITS2 provides new opportunities for obtaining further valuable information, which could be used in phylogenetic analyses, or at population level as demonstrated in our study. This is due to additional information provided by secondary structures and their models. The combined score matrix was used with the methods implemented in the programme 4SALE. Besides the pseudoprotein coding method of 4SALE, the molecular morphometric character coding also has potential for gaining further information for phylogenetic analyses based on the geometric features of the sub-structural elements of the ITS2 RNA transcript.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call