Abstract

Coal gangue spontaneous combustion is a serious catastrophe associated with mining activities. Generally, the areas of coal gangue spontaneous combustion are regions of tremendous heat accumulation. Mastering the regularity of deep temperature distribution and eliminating internal heat is an effective method to control spontaneous combustion. In this study, using self-developed heat pipe (HP) and intelligent cloud monitoring software, three sets of single pipe experiments were conducted in different temperature areas of the coal gangue dump in Yinying Coal Mine. A fitted model between shallow and deep temperatures was established using the least squares method to perform goodness-of-fit tests and significance analysis, and to analyze the internal temperature variation under the action of an HP. The results show that the quadratic model fits better and the regression is significant, and can be used as an empirical regression formula for the shallow temperature estimation of the deep temperature. The temperature was clearly suppressed by the HP, and the average cooling range reaches 21.44% within 700 h. However, the temperature of the control group without an HP continued to rise by 8%. In the three experimental groups, the effective control radius of the single HP was 3 m. The best cooling was achieved when the gangue depth was 1 to 4 m and the temperature was between 90 °C and 450 °C. The study shows that the HP has a great effect on thermal removal and inhibits spontaneous combustion of the gangue. In addition, this paper also provides a theoretical basis for the technology of HP treatment of spontaneous combustion gangue dumps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call