Abstract

Due to the rising worldwide energy demands and the shortage of natural gas resources, the development of shale gas has become the new research focus in the field of novel energy resources. To understand the adsorption mechanism of shale gas in the reservoir, we use grand canonical Monte Carlo (GCMC) method to investigate the internal surface adsorption behavior of methane (main component of shale gas) in microporous and mesoporous montmorillonite materials for changing pressure, temperature and surface spacing. The results show that the adsorption capacity of methane decreases with increasing temperature while increasing as the surface spacing increases. Especially, the adsorption isotherm of the microporous model has a mutation when the surface spacing is about 10 ˚A. According to the trend for the change in the adsorption capacity, the best scheme for the exploitation of shale gas can be selected so that the mining efficiency is greatly improved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call